

Thorpe Helsey Calculation

Policy

Updated February 2022

About

The following calculation policy was devised in line with the Winterhill and Wingfield Learning Community to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. This has then been updated and regularly reviewed to meet the needs of our school. Please note that early learning in number and numerical patterns in EVFS follows the 'Development Matters' Early Years Foundation Stage (EYFS) document and the 'Revised Early years Curriculum 2021'. This calculation policy is designed to build on progressively from the content and methods established in the EYFS.

Age stage expectations:

The calculation policy is organised according to end of key stage expectations as set out in the National Curriculum 2014. It is expected that where children are working below the age expectations, they are shown and develop the strategies for earlier year groups. However, once a child is competent at the methods for their year group, they should be set challenges of a greater depth to consolidate their deep understanding. At Thorpe Hesley Primary School, alongside the other schools within the academy, we promote the use and development of mental, pictorial and formal strategies and present these in a variety of different contexts.

Choosing a calculation method:

Children need to build competency in their mathematics by using concrete objects, seeing pictorial representations and being encouraged to draw such representations themselves before moving to the abstract. Pictorial representations such as 'bar models' are often essential when children attempt to solve problems. Therefore they need to be encouraged to use the following processes in deciding what approach they will take to a calculation. This is to ensure they select the most appropriate method for the numbers involved. There are examples within the policy where the written calculations are pictorial representations of mental calculations and in some instances a written method will not be required. Equally, there is flexibility for earlier methods to be selected when answering a question and this should not be seen as a step back in learning.

Providing a context for calculation:

It is important that any type of calculation is given a real-life application or problem solving approach to help build children's understanding of the purpose of calculation and to help them recognise when to use certain operations and methods when faced with problems. All children must have a regular opportunity to apply their mathematics. They must be encouraged to draw images such as 'bar models', label what they know, underline key information, and do jottings to support their problem solving.

Mathematics planning and assessment:

We follow the White Rose Maths schemes of work as a basis for effective planning; this provides some clear examples of expected progression for 'Fluency, Reasoning and Problem Solving'. Children are set for maths within their current year groups however staff always plan together to ensure consistency and progression. To improve fluency and recall of times tables, TT Rockstars is used on a regular basis from year 2 to year 6. White Rose formal assessments are completed on a termly basis alongside a mental maths tests. Pre and post learning takes place regularly to address misconceptions and support individuals and small groups with new learning. All data is analysed and used to inform future planning and intervention.

Suggested Expectations for Reception

Addition	Subtraction	Multiplication	Division
Initial experiences should involve physical counting with a range of objects. E.g. Fingers Numicon Claps or drum beats/actions Moveable objects Number songs and rhymes should be an integral part of teaching number. When children are confident at counting both groups altogether they can begin counting on from a number to find the total. This can be supported by putting objects in a container E.g. pennies in a purse sweets in a bag $4 p$ and $2 p$ Part - whole model: this model can be used to combine two parts to make a whole. Use cubes and numicon to add two numbers together as a group or in a bar.	Initial experiences should involve physical and oral counting backwards with a range of songs and rhymes, objects and real life situations. E.g. fingers, Numicon, pegs, coins, moveable objects and songs Subtraction as taking away or difference Knowledge of I more and I less. - Use tins and counters. E.g. If we had 8 biscuits and we ate one, how many would be left? - Use Numicon. E.g. You have a seven and take I away/ cover I up /hide I. What do you have left? Use a 10 frame as an alternative visual model Eg, 10-2 = 8 - Use washing line and spotty cards. E.g. Find a card with one spot and peg it on the line. Find a card with one more spot etc. - Use human number lines E.g. give children a number from I-10 and ask them to make a human number line. - Use counters and move them away from the group, counting back as you do so. E.g. 13-4	Doubling Use practical activities show how to double numbers. E.g. double 4 is 8 $4 \times 2=8$ Counting in pairs/groups Begin to lay the foundations for multiplying by maximising opportunities when counting. E.g. Number rhymes such as two, four, six, eight, ten fat sausages sizzling in a pan. E.g. Pairs of children, socks, animal legs, eggs in an egg box, 2 p coins, etc.	Sharing Requires secure counting skills Develops importance of one-to-one correspondence Practical activities involving sharing, distributing cards when playing a game, putting objects onto plates, into cups, hoops, etc. Grouping Sorting objects into 2's E.g. - How many pairs of socks are there? - How many biscuits does each bear get? For the exceeding strand, introduce finding half as sharing between 2 . Use a rectangle to share objects into, to support bar modelling.

Make links to money and find different ways to make various amounts of money.

As children become more confident, they will begin to commit these number bonds to memory and should be encouraged to use these facts in their play and learning.

E.g.

Di has 6p. Her Mum
gives her 4p. How much does she have altogether?
Or Di has 10p she spends 6p, how much does she have left?
Or Di has 6p how much more does she need to make 10 p altogether?

These number bonds can be shown as simple number sentences e.g. $10 p=6 p+4 p$

$$
20 p=15 p+5 p
$$

Use the part-part whole diagram as shown above to move into the abstract.

5

Use Numicon to investigate which 2 plates fit into a larger number. Extend to 3, 4 or more

Move to counting back on a number line, starting with the larger and showing the jumps to reach the smaller, then ending by mentally holding numbers in your head and counting back using fingers to help.

Understanding of the difference between two numbers:

- Use washing line or number track to count on, e.g. from 6 to 8
- To find the difference between 4 and 7 , make lines of each number and count on from the smaller number.
- Use a bar model to show the difference between two numbers
Eg. the difference between 5 and 3

- What's the difference between 7 and 4 ?

Addition	Subtraction	Multiplication	Division
Children should continue to use physical objects for counting and combining initially. Numicon should be used as a visual model. Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. $\begin{aligned} & 2=1+1 \\ & 2+3=4+1 \\ & 3=3 \\ & 2+2+2=4+2 \end{aligned}$ Missing numbers need to be placed in all possible places. $\begin{array}{ll} 3+4=\nabla & \nabla=3+4 \\ 3+\nabla=7 & 7=\nabla+4 \\ \nabla+4=7 & 7=3+\nabla \\ 0+\nabla=7 & 7=\nabla+0 \end{array}$ Children should have access to a wide range of counting equipment and everyday objects, such as hoops, sorting trays, number tracks and number lines, to support their problem solving Re-grouping Recognise numbers bonds and related facts within 20. Re-group numbers to make 10 .$\begin{aligned} & 6+5=11 \\ & 6+4+1=11 \end{aligned}$ 	Number sentences and missing number $7-3=\nabla$ $7-\nabla=4$ $\nabla-3=4$ $0-\nabla=4$ $\begin{gathered} \nabla=7-3 \\ 4=\nabla-3 \\ 4=7-\nabla \\ 4=7-\nabla \end{gathered}$ These calculations can also be represented using bar models. E.g. Understand subtraction as 'take away'. E.g. $6-\mathrm{I}=5$ Use Numicon to cover the larger number with the smaller number to reveal how many are left. Eg. 6-4=2 But also as a 'difference' by counting up. E.g. I have saved $£ 5$. The socks that I want to buy cost $£ I I$. How much more do I need in order to buy the socks? Use practical and informal written methods to support the subtraction of a one-digit number from a one or two-digit number and a multiple of 10 from a two-digit number.	Multiplication is related to doubling and counting groups of the same size (repeated addition). Use of arrays Looking at columns $2+2+2$ 3 groups of 2 Looking at rows $3+3$ 2 groups of 3 Counting using a variety of practical resources Counting in 2 s e.g. counting socks, shoes, animal legs... Counting in 5 s e.g. counting fingers, fingers in gloves, toes... Counting in 10 s e.g. fingers, toes... Make bundles of 5 or 10 straws and practice grouping objects. Pictures/ marks There are 5 sweets in one bag. How many sweets are there in 3 bags?	Sharing Once children are confident at sharing and grouping objects practically they can be encouraged to make simple jottings. Initially this could be using physical objects but requiring children to draw the correct number of places, circles, plates etc. Next children should be encouraged to make simple drawings to help solve their problems. Checking by counting that all groups are the same. Sharing 6 sweets are shared between 2 people. How many do they have each? Use practical objects to share between 2 cells. $\begin{array}{\|l\|l\|} \hline 111 & 111 \\ & 6 \div 2=3 \end{array}$ Grouping Each bag holds 2 gold coins. If there are 12 gold coins, how many bags are needed? The number sentence can be modelled alongside if required. $\text { E.g. } \begin{aligned} 12 \div 2=6 \\ 12 \div 6=2 \end{aligned}$

Children should be encouraged to look for problems where they can find＇short cuts＇
E．g．Counting on in tens and ones
$23+12=23+10+2$

$$
=33+2
$$

$$
=35
$$

This can then be used with numbers which bridge the tens boundary

E．g． $27+36$	$=20+7+30+6$
	$=50+7+6$
	$=50+13$
	$=50+10+3$
	$=60+3$

E．g．Add 9 by adding 10 and adjusting by I

Towards a Written Method

Partitioning in different ways and recombine
47＋25
47
25
$+12$
期职 + 明斯 $=$

Leading to exchanging：
72
盎相
Expanded written method
60

Or

Move to partitioning（where appropriate） E．g． $4 \mathrm{I}-\mathrm{I} 4=27$

E．g． $4 \mathrm{I}-\mathrm{I} 4=4 \mathrm{I}-\mathrm{I} 0-\mathrm{I}-3$

owards written methods

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers．The numbers may be represented with Dienes apparatus．E．g．75－42

89000

E．g．Double 15 can be viewed as

10	+5
\downarrow	\downarrow
20	$+10=30$

Children also need to be taught that if they are not all equal the extra ones must be left as a remainder．
E．g． 16 stickers are shared between 3 children．How many do they get each？

5 ，with I left over．

16		
11111	1111	1111

| Adding decimals | | |
| :--- | :--- | :--- | :--- |
| Introduce decimal numbers though money. | | |
| Extend to include decimals to 2 decimal | | |
| places in the context of money/measures. | | |
| | | |
| $£ 2.28+$ | | |
| $\frac{£ 5.46}{£ 7.74} \mathrm{1}$ | | |

Addition	Subtraction	Multiplication	Division
Continue to practise and use mental addition strategies from years 3 and 4. Use mental methods where possible to add. Introduce column addition up to HThThHTU. Add several numbers with different numbers of digits. E.g. Find the total of 42, 6432, 786, 3, 468। $\begin{array}{r} 6432 \\ 4681 \\ 786 \\ 42 \\ 3^{3}+ \\ \hline 11944 \end{array}$ Students can apply these skills to a range of problems, including missing boxes. Continue to develop mental skills through the use of adjustments. E.g. $15003+4697=15000+4700$ E.g. $2936+1999=2935+2000$ Continue to develop addition of decimals to include numbers with different numbers of decimal places. $\text { E.g. } \begin{gathered} 2.5 \\ +13.67 \\ \hline \end{gathered}$	Continue to practise and use mental subtraction strategies from years 3 and 4 . Introduce the standard written method, up to an including ThHTU, with exchanging. E.g. 1487-234 1487 $\begin{array}{r} -234 \\ \hline 1253 \\ \hline \end{array}$ E.g. 3228-1615 $\begin{array}{r} 21 \\ 8228 \\ -\quad 1615 \\ \hline 1613 \\ \hline \end{array}$ Students can apply these skills to a range of problems, including missing boxes. 4 । 2 Continue to develop mental skills through the use of adjustments. $\text { E.g. } 10,000-3627=9999-3626$ Extend to include decimals to 2 decimal places in the context of money/measures. Introduce 'counting on' method of subtraction for decimals in the context of money. Use a number line to model it. E.g. $£ 4.30-£ 2.80=£ 1.50$	Consolidate formal and informal methods from previous years Long Multiplication TU x TU E.g. 72×38 Approximate by rounding first: $\begin{aligned} & 70 \times 40=2800 \\ & \\ & 72 \\ & \times \quad 38 \\ & \hline 576(8 \times 72) \\ & 2160(30 \times 72) \\ & \hline 2736 \end{aligned}$ Leading to: $\begin{array}{r} 72 \\ \times 38 \\ \hline 576 \\ 2160 \\ \hline 2736 \\ \hline \end{array}$ This can be extended to ThHTU x TU once children are competent at this method.	Consolidate formal and informal methods from previous years They should also be given opportunities to give answers rounded up or down. E.g. A piece of rope is 1534 m long. It is cut into sections 5 m long. How many pieces of rope can be cut? $\begin{array}{r} 0306 \text { r } 4 \\ 51^{1} 53^{3} 4 \end{array}=306 \text { pieces. }$ They should be taught to do division of decimal numbers. $\begin{array}{r} 91.6 \\ 3 \longdiv { 8 ^ { 2 } 7 4 . 1 8 } \end{array}$

Addition	Subtraction	Multiplication	Division
Consolidate and refine mental strategies for addition, developing fluency and speed. Apply and using these in the context of money and measures. Extend to numbers up to $10,000,000$ and decimals with different numbers of digits with up to three decimal places. Make sure children are encouraged to make numbers have the same number of digits after a decimal point to support calculations. E.g. $15.98+26.314=$ $\begin{aligned} & 15.980 \\ & \underline{126.314}_{\underline{122.294}}+ \\ & \hline \end{aligned}$ Continue to use missing box activities, where both addition and subtraction may be required to find the answer. Begin to add numbers including negatives, in context, without a number line. A number line with positive and negative numbers should continue to be used to clearly illustrate the learning image in various positions.	Consolidate and refine mental strategies for subtraction, developing fluency and speed. Apply and using these in the context of money and measures. Extend to numbers up to $10,000,000$ and decimals with different numbers of digits with up to two decimal places. Make sure children are encouraged to make numbers have the same number of digits after a decimal point to support calculations. E.g. 325.9-34.3I = $\begin{array}{r} { }^{2} 3^{\prime} 25 .^{8} 9^{\prime} 0 \\ \quad 34.31 \\ \hline 291.59 \\ \hline \end{array}$ Continue to use missing box activities, where both addition and subtraction may be required to find the answer. E.g. $3.27-\square=1.13$ Begin to subtract numbers including negatives, always in context. A number line with positive and negative numbers should continue to be used to clearly illustrate the learning image. $\begin{aligned} \text { E.g. }-£ 2-£ 7 & =-£ 9 \\ 2 p-7 p & =-5 p \\ -7 m--2 m & =-5 m \end{aligned}$	Consolidate formal and informal methods from previous years Consolidate formal written methods up to ThHTU x TU E.g. $\begin{array}{r} 124 \\ \times \quad 36 \\ \hline 7^{\prime} 4^{2} 4 \\ +\quad 37^{\prime} 20 \\ \hline 4^{\prime} 464 \end{array}$ Extend formal written methods to multiplying decimal numbers, up to 2 decimal places, by I and 2 digit integers E.g. Or alternatively use relationship to whole numbers $\text { E.g. } 23 \times 3=69$ $69 \div 10=6.9$ Moving on to multiply a decimal by a decimal $\begin{array}{r} 2.3 \\ \times \quad 3.7 \\ \hline 8.51 \\ \hline \end{array}$ Or alternatively use relationship to whole numbers $\text { E.g. } 23 \times 37=85 \mathrm{I}$ $851 \div 10=8.51$	Consolidate short division methods from previous years. Teach division giving answers as a decimal. E.g. $73 \div 4=$ $4 \longdiv { 7 ^ { 3 } 3 }$ And $4 \longdiv { 7 ^ { 3 } 3 . 2 5 }$ Long division methods should be taught for division by 2 digit numbers Extending up to ThHTU \div TU e.g. $7762 \div 18$ The $I, 2,10 \& 5 \times$ tables should be noted to support the calculation - children can then work out all the additional ones if needed. $\begin{aligned} & 1 \times 18=18 \\ & 2 \times 18=36 \\ & 5 \times 18=90 \\ & 10 \times 18=180 \\ & \\ & 0431 \mathrm{r} 4 \\ & 18 \end{aligned}$

Fractions

Links to real life problems should be made at all stages.

Addition and subtraction of fractions with common denominators (where the sum is less than a whole)

Identify what must be added to one fraction to make a whole.
E.g. $\frac{1}{4}+\frac{3}{4}=\frac{4}{4}$

or

Extend to the addition of fractions with the same denominator, not bridging the whole.
E.g. $\frac{1}{7}+\frac{5}{7}=\frac{6}{7}$

Or

Extend to adding fractions when the whole is bridged (conversion to mixed numbers not necessary)
E.g. $\frac{4}{5}+\frac{2}{5}=\frac{6}{5}$

E.g. $\frac{11}{8}-\frac{5}{8}=\frac{6}{8}$

Difference is $6 / 8$

Finding fractions of quantities

E.g. Find $\frac{3}{5}$ of 10

10				
2	2	2	2	2
6				

Or
$\frac{1}{5}$ of $10=10 \div 5=2$
So $\frac{3}{5}$ of $10=3 \times 2=6$
Students should be able to verbalise and record their reasoning in a variety of ways.
E.g. $\frac{13}{18}-\frac{2}{9}_{x 2}^{x 2}=\frac{13}{18}-\frac{4}{18}=\frac{9}{18}=\frac{1}{2}$

Multiplication

Multiply a single fraction by a whole number using either method shown below.
The link between repeated addition and multiplication should be made.
E.g. $5 \times \frac{1}{4}=\frac{5}{4}=\left(1 \frac{1}{4}\right)$

E.g. $2 x^{3} / 8=6 / 8$

Multiply a mixed number by a whole number.
Begin with a pictorial method.

Method 2: Turn any mixed numbers into improper fractions first
E.g. $1 \frac{5}{8}-\frac{2}{3}$
$=\frac{13}{8}-\frac{2}{3}{ }_{x 8}$
$=\frac{39}{24}-\frac{16}{24}$
$=\frac{23}{24}$

Multiplying fractions
Continue to practise Year 5 written methods for multiplying a single fraction by a whole number.

Multiply two proper fractions.
Begin with a pictorial method.
E.g. $\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}$

E.g. $\frac{2}{5} \times \frac{1}{4}=\frac{2}{20}=\frac{1}{10}$

E.g. $\frac{7}{8}-\frac{3}{8}=\frac{4}{8}$
(simplification not always necessary)

